手机浏览器扫描二维码访问
“抱歉,我知道从我来香江开始,大家就很期待我在香江召开专业性质更强一点的学术讲座。
我一直都有所准备,这个学术讲座我之所以安排在今天,完全是因为我想着我研讨班的香江年轻人也能听懂其中的内容,能够从我介绍的课题中找到感兴趣的方向,做出有价值的内容。”
香江大学阶梯教室内,和前面一个月稀稀拉拉个位数人头比起来,这回坐满了人。
除了香江本地的数学家外,还有来自亚洲各地的数学家,其中来的最多的就是霓虹和印度了。
霓虹是因为他们战后经济快速复苏,小平邦彦在54年获得菲尔兹奖让霓虹有浓厚的数学氛围。
而小平邦彦的研究方向主要是复代数几何,和伦道夫纲领存在大量重叠之处。
导致霓虹方面由小平邦彦带队,一帮东京大学、京都大学和大阪大学的数学家来到香江大学,希望能直接和林燃交流。
你不来霓虹,那我们来香江。
印度则是因为拉马努金的存在,印度的数学研究主要集中在数论和统计学领域,而费马大定理属于是数论王冠上的明珠了。
他们也迫切希望和林燃直接交流。
香江大学的阶梯教室里全是人,闻讯前来的香江记者站在后面拍照,都想好了标题:华人之光香江首讲,竟引得亚洲各国数学家前来朝圣。
在香江媒体看来,哪怕小平邦彦拿了菲尔兹,但地位肯定不如做出费马猜想的林燃。
“相信各位会远道而来听我的讲座,想必对费马猜想以及其证明有所了解。
我想顺着费马猜想来讲我的新猜想。
我想先先从费马关于丢番图问题开始。”
林燃属于逮住费马拼命薅了。
丢番图问题古希腊数学家丢番图提出的问题:求4个有理数,使得其中任两个数之积加上1都是一个有理数的平方。
而费马找到了一个正整数解{1,3,8,120},并且提出问题:能否有第5个整数增加到这个数集中,使得这个新数集也满足丢番图条件。
“费马的丢番图猜想我只需要一张纸就能完成证明。”
在座的数学家哗然,因为费马的丢番图猜想虽说不如费马大定理那么出名,但也同样困扰着数学界一直到今天都没解出来。
结果你现在说你只要一张纸,这未免太夸张了。
“大致流程就是这样,先建立丢番图方程,然后转换为pell方程,再利用线性形式对数理论,就能够排除掉其他解。”
台下阿三们已经憋不住了,纷纷举手质疑道:“林教授,这里的线性形式对数理论是什么?
我怎么从来没有听过这个理论?”
“我也没听过。”
台下议论声四起,陈景润已经意识到林燃要讲什么了。
“没错,我接下来就要继续讲线性形式对数理论。
我们给定代数数α1、α2。。。。。。”
“这个理论把格尔丰德和施耐德关于超越数的理论进行了扩张,我们把理论范围推广到了多个对数的线性组合中。
另外对丢番图逼近里的经典技术进行了改进,让大家可以利用这个方法去估计线性形式的下界。”
不要了疼。忍一忍,马上就好了。男人抓住她的手,为她擦药。男朋友敢玩劈腿,她就敢给他戴绿帽子。她倒是要看看,最后谁先玩死谁。只是,三无老公摇身一变竟然成为了A国人人趋之若鹜的新贵,苏简溪接受无能。她的丈夫确实没车没房,但人家有别墅有游轮还有私人飞机啊。都说苏简溪是狐狸精,傍上金主不说,还让人家当了接盘侠。事后还是厉霆骁亲自辟谣是他追的苏简溪,孩子是亲生的!...
斯摩棱斯克战役库尔斯克会战斯大林格勒战役北非战场太平洋战场神秘的南北极二战过去了半个多世纪,但曾经的战场上仍活跃着一批追寻历史真相与战争宝藏的挖土党。...
草根从一个临时工做起,在与各类对手的对抗中一步步的发展起来。赚钱泡妞对抗阴谋在书中尽现。读者群...
PS新书阴曹地府活人只有我自己求支持。黑暗与诡秘,阴影与不祥。是谁在背后低语呢喃?恐怖复苏,绝望的故事之种于此生根发芽!我从诡秘中醒来,驾驭故事,化身灾劫。我是苏无,字无法。无法即无天,是为劫,亦为天灾,源自万物成空。无法无天,天灾苏无空!我要让唐僧,至此而回!吴承恩执笔沉思苏无空,孙悟空??这个西游有点...
柳明燕以为重生是上天对她的补偿,因为谁让她是被逼而死的。正当她意得志满的享受重生后的美好人生时,为什么总有些莫明其妙的人出现在她身边?小子,你这么傲娇的跟女生说话,你妈知道吗?教官,您跟本姑娘谈情说爱,有打报告给您妈吗?那谁?坏人姻缘是要招雷劈的你造吗?叉腰,四十五度望天的柳明燕很郁闷,她只是想平凡的过完这一生,咋就这么难!?...
黑暗中,她为救他,成了他的女人,他却在隔天清晨匆匆离去。六年后,她进入他的公司,与他擦肩而过,互不相识,但一切展开黑暗中,她为救他,成了他的女人,他却在隔天清晨匆匆离去。六年后,她进入他的公司,与他擦肩而过,互不相识,但一切已悄然发生改变。单纯的妈妈,腹黑的萌娃,当她们遇上他,一段令人啼笑皆非的旅程就此开始。...